
Flexon: A Flexible Digital Neuron for Efficient Spiking Neural Network Simulations

Dayeol Lee∗†, Gwangmu Lee†, Dongup Kwon, Sunghwa Lee, Youngsok Kim, and Jangwoo Kim

Department of Electrical and Computer Engineering, Seoul National University
∗Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

Abstract—Spiking Neural Networks (SNNs) play an im-
portant role in neuroscience as they help neuroscientists
understand how the nervous system works. To model the
nervous system, SNNs incorporate the concept of time into
neurons and inter-neuron interactions called spikes; a neuron’s
internal state changes with respect to time and input spikes,
and a neuron fires an output spike when its internal state
satisfies certain conditions. As the neurons forming the nervous
system behave differently, SNN simulation frameworks must
be able to simulate the diverse behaviors of the neurons. To
support any neuron models, some frameworks rely on general-
purpose processors at the cost of inefficiency in simulation
speed and energy consumption. The other frameworks employ
specialized accelerators to overcome the inefficiency; however,
the accelerators support only a limited set of neuron models
due to their model-driven designs, making accelerator-based
frameworks unable to simulate target SNNs.

In this paper, we present Flexon, a flexible digital neuron
which exploits the biologically common features shared by
diverse neuron models, to enable efficient SNN simulations.
To design Flexon, we first collect SNNs from prior work in
neuroscience research and analyze the neuron models the SNNs
employ. From the analysis, we observe that the neuron models
share a set of biologically common features, and that the
features can be combined to simulate a significantly larger set
of neuron behaviors than the existing model-driven designs.
Furthermore, we find that the features share a small set of
computational primitives which can be exploited to further
reduce the chip area. The resulting digital neurons, Flexon and
spatially folded Flexon, are flexible, highly efficient, and can
be easily integrated with existing hardware. Our prototyping
results using TSMC 45 nm standard cell library show that a
12-neuron Flexon array improves energy efficiency by 6,186x
and 422x over CPU and GPU, respectively, in a small footprint
of 9.26 mm2. The results also show that a 72-neuron spatially
folded Flexon array incurs a smaller footprint of 7.62 mm2 and
achieves geomean speedups of 122.45x and 9.83x over CPU and
GPU, respectively.

I. INTRODUCTION

Spiking Neural Networks (SNNs), often classified as the

third generation of neural network models, incorporate the

concept of time into neurons and inter-neuron interactions

called spikes [1], [2]. SNNs greatly contribute to accurate

modeling of the nervous system as their operating model

closely resembles that of biological neurons. In SNNs, the

internal state of a neuron changes with time based on input

spikes from other neurons, and a neuron fires an output

†These authors contributed equally to this work.

spike when its internal state satisfies a set of pre-defined

conditions. Such a temporal aspect of SNNs enables efficient

information processing, and thus researchers are actively

investigating to use SNNs instead of the current machine

learning approaches for various tasks (e.g., digit recognition

[3], [4], object recognition [5], [6]).

For accurate simulation of an SNN, SNN simulation

frameworks should support diverse neuron behaviors as

SNNs consist of neurons behaving differently with the same

set of input spikes and the same amount of time [7].

For instance, one neuron may maintain a similar level of

membrane potential, the amount of charge which decides

whether the neuron should fire a spike, over time. On the

other hand, the membrane potential of another neuron may

slowly decrease over time, eventually reaching the lowest

possible level if the neuron does not retrieve any input spikes

for a long period of time. Thus, support for a wide range of

neuron behaviors is a key requirement of SNN simulation

frameworks.

To support diverse neuron behaviors, existing SNN simu-

lation frameworks utilize general-purpose processors such

as central processing units (CPUs) [8]–[12] and graph-

ics processing units (GPUs) [13]–[15]. Unfortunately, the

frameworks fail to achieve efficient SNN simulations due to

the high computational overheads of internal state updates.

To accelerate SNN simulations, GPU-based frameworks

perform computations on the high-throughput GPUs instead

of CPUs. However, regardless of the underlying hardware,

a large portion of SNN simulation latency is caused by

updating the internal states of all neurons at every simulation

time step (e.g., 1 ms). The reason is that every neuron must

be evaluated for accurate modeling; input spikes should be

processed at proper time steps, and internal states change

over time. Thus, to achieve efficient SNN simulations, it is

important to minimize the overheads of updating neurons’

internal states.

To avoid the inefficiencies, some other frameworks ac-

celerate the internal state updates by implementing a few

neuron models on field-programmable gate arrays (FPGAs)

[16], [17] or application-specific integrated circuits (ASICs)

[5], [11], [18], [19]. Although they excel at efficiently simu-

lating their target neuron models, their model-driven designs

prevent them from supporting diverse neuron behaviors.

For instance, Ambroise et al. [16] and IBM TrueNorth

275

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

2575-713X/18/$31.00 ©2018 IEEE
DOI 10.1109/ISCA.2018.00032

[5] only support a greatly simplified neuron model (i.e.,

linear leak integrate-and-fire) whose biological accuracy is

too low for accurate biological simulations. As another

example, Neurogrid [19] supports a much more complex

neuron model; however, it cannot support simplified neuron

models (e.g., IBM TrueNorth) as its design is bound to the

complex neuron model. In short, existing model-driven SNN

simulation accelerator designs lack the flexibility to simulate

diverse neuron behaviors.
In this paper, we present Flexon, a flexible digital neuron

capable of simulating diverse neuron models to enable

efficient SNN simulations. To design Flexon, we first ana-

lyze and identify 12 biologically common features shared

by various neuron models; different combinations of the

biologically common features can simulate different neuron

models. Then, we design and present Flexon whose data

paths implement the biologically common features. After

that, we design and present spatially folded Flexon, a vari-

ation of the baseline Flexon aiming to reduce the required

chip area by eliminating the redundant arithmetic units in

the baseline Flexon. Using control signals which schedule

the sub-operations of a biologically common feature de-

manding the same arithmetic units, spatially folded Flexon

can accurately simulate all the biologically common features

and thus the same set of neuron models supported by the

baseline Flexon. By exploiting the biologically common

features which are more fine-grained than complete neuron

models, Flexon achieves high flexibility and efficiency, and

can be easily integrated with existing hardware.
To evaluate the effectiveness of Flexon, we wrote Ver-

ilog code for Flexon and synthesized it at register-transfer

level (RTL) using TSMC 45 nm standard cell library. The

synthesis results indicate that Flexon greatly improves the

energy efficiency of SNN simulations over general-purpose

processors; a 12-neuron Flexon array improves the energy

efficiency of neuron simulation by 6,186x and 442x over

server-class CPU and GPU, respectively. The results also

show that spatially folded Flexon successfully reduces the

required chip area; a 72-neuron spatially folded Flexon array

incurs only a footprint of 7.62 mm2 which is similar to that

of the 12x Flexon array (9.26 mm2). In addition, the spatially

folded Flexon array greatly reduces neuron computation

latency by 122.45x and 9.83x over the server-class CPU and

GPU, respectively, by employing a 2-stage pipeline design.

In short, the results clearly show that Flexon is a promising

solution to enable efficient SNN simulations.
In summary, this work makes the following contributions:

• Identification of Biologically Common Features. We

show that the diverse neuron models employed by neu-

roscience researchers and their SNNs share biologically

common features which can be exploited to design a

highly efficient digital neuron.

• Design & Evaluation of Flexon (Baseline Flexible
Digital Neuron). Using data paths implementing the

Spike

Time

Axon

Soma

Dendrite

Synapse

Figure 1. Biological neurons and their interactions

biologically common features, we design and present

Flexon which achieves high flexibility by being able to

simulate diverse neuron models.

• Design & Evaluation of Spatially Folded Flexon
(Area-Optimized Variation of Flexon). We also

present spatially folded Flexon which further reduces

the required chip area by eliminating the redundant

arithmetic units in the baseline Flexon.

II. SPIKING NEURAL NETWORKS

A. Biological Neurons

The brain consists of billions of neurons, which have

been of special interest to neuroscientists due to their ability

to communicate with others using electrochemical signals

called spikes. A biological neuron consists of dendrites, a

soma, and an axon (Figure 1). The dendrites retrieve input

spikes from other neurons and relay the input spikes to

the soma, the body of the neuron. The soma maintains the

membrane potential of the neuron which tracks the temporal

history of input spikes received by the neuron. Regardless

of the input spikes, the membrane potential slowly decays

over time, and thus its value reaches a steady state if the

neuron receives no input spike for a long period of time.

When the level of the membrane potential reaches a pre-

defined threshold called threshold voltage, the soma fires an

output spike to other neurons through the axon.

The spikes are transmitted through synapses, chemical

channels between neurons. When a neuron receives a spike

from another neuron through a synapse, the membrane po-

tential of the neuron either increases or decreases depending

on the type and the strength of the synapse. Typically, the

synapse is called an excitatory synapse if the membrane

potential increases; otherwise, the synapse is classified as

an inhibitory synapse. The strength of the synapse is called

synaptic weight. The change in a neuron’s membrane poten-

tial due to spikes is called neuronal dynamics [20], and is a

generator of the complex behaviors of the nervous system.

Due to such timing-dependent behaviors and interactions

of neurons, accurate modeling of the nervous system re-

quires the involvement of time in abstraction models.

B. Neuron Models

A variety of neuron models have been proposed and are

used to simulate biological neural networks. Among the

276

�

��
���

��

	
���

����������
���������
����

���

������������ ��
��
����
����

�����

��

	
���
	
���

�

� �

��
����
�����
�������
�����������������

 ��
����
����

Figure 2. Operations and characteristics of LIF model

neuron models, Hodgkin-Huxley (HH) model [21] is widely

acknowledged for its high modeling accuracy. HH model

employs a resistor-capacitor circuit (RC circuit) to model the

membrane potential of a neuron. Using the RC circuit, HH

model captures the neuron’s membrane potential, excitatory

synapses, inhibitory synapses, and membrane decay. With

a few associated differential equations, HH model is able

to express diverse characteristics of the neuron, achieving a

high biological modeling accuracy.

Unfortunately, HH model incurs too high computational

overheads not acceptable to be acceptable for practical uses

[22]. In order to avoid the high computational overheads,

neuroscience researchers have been employing simpler neu-

ron models derived from Leaky Integrate-and-Fire (LIF)

model [23] (Figure 2). LIF model simulates a biological

neuron using 1) a state variable tracking the membrane

potential of the neuron, 2) a differential equation for ex-

ponential decay, and 3) three constants each defining decay

rate (τ = RC), threshold voltage (θ), and resting voltage

(v0). Mathematically, LIF model can be expressed as:

τ
dv

dt
= v0 − v + I

if v > θ, then fire a spike and v = v0

(1)

where v and I are the membrane potential and the input

spike current, respectively.

When implementing LIF model using digital circuits, we

should convert the differential equation to a discrete form

using available methods such as Euler method. By applying

Euler method to Equation 1, we obtain:

vt = vt−1 +
Δt

τ
(v0 − vt−1 + It)

if vt > θ, then fire a spike and vt = v0

(2)

where Δt is a discrete time step (e.g., 1 ms). Note that

Equation 2 has a subscript t on v to denote vt as a time-

varying state variable. It denotes the input spike current at

time t, and can be expressed as I =
∑n−1

i=0 WiAi where

n is the number of synapses, Wi is the synaptic weight of

the i-th synapse, and Ai denotes whether an input spike has

been received through the i-th synapse. If an input spike has

been received, Ai = 1; otherwise, Ai = 0.

Due to its lower computational overheads compared to

HH model, LIF model has served as a basis for various

neuron models which neuroscience researchers heavily uti-

lize [20], [24]. The low computational overheads also make

the neuron models based on LIF model an attractive choice

for designing specialized hardware for SNN simulations. On

the one hand, there have been efforts to employ Linear-

Leak Integrate-and-Fire (LLIF) model [25], a neuron model

which replaces the exponential membrane decay of LIF

model with a linear one. For instance, Nere et al. [26]

and IBM TrueNorth [5] employ LLIF model as their target

neuron to minimize the computational overheads of neuron

simulations. On the other hand, a large volume of research

aims to extend LIF model for better biological neuron

modeling accuracy. For instance, recent work by Smith [27]

proposes four digital neurons which implement LLIF model

and three other LIF-based models each extending LIF model

to have step inputs (SLIF model), the zeroth order version of

spike response model (SRM0 model), and decaying synaptic

conductances (DLIF model).

C. Simulating the Time Steps of a Spiking Neural Network

To understand how the nervous system performs high-

level functions, neuroscientists employ SNNs to model the

nervous system. The operating model of SNNs resembles

that of the nervous system by incorporating the concept

of time in their neurons; the membrane potentials of the

neurons are updated on each time step. Accordingly, neurons

fire and receive spikes with respect to time. The generated

output spikes are propagated after a certain number of time

steps, or delay, associated to each synapse, and each neuron

adjusts its membrane potential with respect to the input

spikes and their delays.

As SNNs incorporate the concept of time in their oper-

ating model, SNN simulation is typically the evaluation of

the time steps of an SNN. We identify the three most time-

consuming phases for evaluating each time step: stimulus

generation, neuron computation, and synapse calculation.

Stimulus Generation. This stage generates the spikes forged

by a pattern or a random number generator, and injects them

to the network to mimic external stimulus from outside of an

SNN. Depending on the configuration, it either reads a pre-

defined pattern or randomly decides whether it should inject

spikes at the time step. The spikes get bound to a specific set

of neurons, and are processed by synapse calculation stage.

Neuron Computation. This stage computes the change in

the internal state of each neuron (e.g., membrane potential),

and determines whether the neuron should fire a spike

according to the updated internal state. In this stage, each

neuron first computes the amount of change in its state with

respect to the time lapse and an accumulated weight. The

underlying logic for calculating the change depends on the

neuron model. Then, the neuron checks the firing condition

by comparing the membrane potential against a threshold

voltage, and generates a spike if the firing condition is met.

277

Table I
DESCRIPTION OF THE SNNS COLLECTED FROM PRIOR NEUROSCIENCE

RESEARCH PUBLICATIONS

Name Structure Neuron Model Notes

Brette et al. [28]
2.4 K neurons

2.4 M synapses
DLIF RKF45

Brunel [29]
5 K neurons

2.5 M synapses
IF psc alpha

(PyNN)
Euler

Destexhe-LTS [30]
500 neurons

20 K synapses
AdEx RKF45

Destexhe-UpDown [30]
2.5 K neurons

100 K synapses
A variation of

AdEx
RKF45

Izhikevich [31]
10 K neurons

10 M synapses
Izhikevich GPU

Muller et al. [32]
1,728 neurons

762 K synapses
IF cond exp

gsfa grr (PyNN)
RKF45

Nowotny et al. [33]
1,220 neurons

202 K synapses
Izhikevich GPU

Potjans-Diesmann [34]
8 K neurons

3 M synapses
DSRM0 Euler

Vogels et al. [35]
10 K neurons

1.92 M synapses
DLIF RKF45

Vogels-Abbott [36]
4 K neurons

320 K synapses
DLIF RKF45

Synapse Calculation. This stage classifies the generated

spikes according to their target neurons, and aggregates them

to calculate the accumulated weights for each neuron. The

stage first gathers the spikes generated by the neurons and

the stimulus generator, and fetches the weight of synapses

the spikes flowed through. Then, it accumulates the weights

and forwards them to the target neurons.

III. LIMITATIONS & DESIGN GOALS

A. High Neuron Computation Overheads

To identify the major performance bottleneck of SNN

simulations, we profile a number of SNNs used by prior

neuroscience research publications on CPU and GPU frame-

works. First, end-to-end SNNs having different structures are

collected from prior work (Table I). The collected SNNs

employ different neuron and synapse counts, and neuron

models. In addition, the SNNs use either Runge–Kutta–

Fehlberg method (RKF45 method) [37] to achieve a high

biological accuracy, or Euler method to reduce the overheads

of differential equations. Then, we profile the simulation

latency of the SNNs on Intel Xeon E5-2630 v4 CPU (12-

core, 2.2 GHz) and NVIDIA Titan X (Pascal) GPU. We use

PyNN [38] to describe the SNNs, NEST [9] to simulate the

SNNs on the CPU, and GeNN [15] for GPU simulations.

Each SNN is configured to use a time step of 0.1 ms and to

run for 100,000 time steps (i.e., 10 s in biological time).

Our profiling results indicate that CPU- and GPU-based

SNN simulations greatly suffer from the neuron compu-

tation phase (Figure 3). Throughout the SNNs employing

different differential equation solvers and running on differ-

ent general-purpose hardware, neuron computation incurs a

considerable amount of latency. Employing Euler method in-

stead of RKF45 method (e.g., Brunel) or the high-throughput

GPU (e.g., Izhikevich, Nowothy et al.) reduces the propor-

tion of neuron computation; however, neuron computation

�� ��� ��� ��� ��� ����

	
�������
��
	
���������

�
��������������
�
�
����������� �!"
�
�
�����������#�!"

$%�&������
'()�*�+�,)�� �!"
'()�*�+�,)��#�!"

�����-)��!.�
��
�����-)��/01

2&%��
2&����������

1���%%�� ���&���
� ��%&
��#
�.%����
� 1���.���#�,%���
� 3�)�&�

Figure 3. Breakdown of the SNN simulation latencies

still contributes to the latency by up to 32.2%. Therefore,

to achieve fast and efficient SNN simulations, specialized

hardware for neuron computation is a key requirement [12].

In order to minimize the high overheads of neuron compu-

tation, prior work has proposed to implement neuron models

on FPGAs [16], [17] and ASICs [11], [18], [19], [39],

[40]. Employing specialized accelerators can significantly

improve SNN simulation efficiency in terms of latency and

energy efficiency; however, their model-driven digital neu-

rons prevent the accelerators from supporting diverse neuron

behaviors. For instance, IBM TrueNorth [40], a custom-

designed board implementing a greatly simplified neuron

model whose decay is in a linear form, cannot support

neuron models whose decays follow exponential functions

due to the lack of multiplication units. Neurogrid [19]

supports complex neuron models IBM TrueNorth cannot

support; however, Neurogrid cannot simulate the linear-

decay model of IBM TrueNorth as it lacks support for

linear decays. To support diverse neuron behaviors while

maintaining the high efficiency, SpiNNaker [11] is equipped

with low-power ARM CPU cores which perform neuron

computation. Unfortunately, SpiNNaker still suffers from the

high computational overheads of neuron computation as the

neuron computation performance is bounded by the CPU

cores.

B. Design Goals

Motivated by the high neuron computation overheads of

CPU- and GPU-based frameworks, and the limited neuron

model support of the existing SNN simulation accelerators,

a new digital neuron achieving the following design goals

is necessary. First, it should achieve high flexibility by

supporting a wide range of neuron models, especially the

ones derived from LIF model, to enable efficient SNN

simulations. Second, in addition to support for various

neuron models, they should not be designed in a model-

driven manner. Instead, the new digital neuron should search

for and exploit more fine-grained characteristics which can

form an end-to-end neuron model in a cooperative manner.

Third, the new digital neuron should be easily applicable

to existing hardware (e.g., as new data paths to existing

278

Table II
SUMMARY OF THE BIOLOGICALLY COMMON FEATURES ANALYZED

FROM THE COLLECTED NEURON MODELS. THE BASELINE NEURON

MODEL IS LIF MODEL AND ITS UTILIZED FEATURES ARE MARKED AS

BOLD; LIF MODEL DOES NOT EMULATE SPIKE INITIATION,
SPIKE-TRIGGERED CURRENT, AND REFRACTORY.

Category Name Abbr.

Membrane Decay
Exponential EXD

Linear LID

Input Spike
Accumulation

Current-Based CUB
Conductance-Based (Exponential) COBE

Conductance-Based (Alpha Function) COBA
Reversal Voltage REV

Spike Initation
Quadratic QDI

Exponential EXI

Spike-Triggered
Current

Adaptation ADT
Subthreshold Oscillation SBT

Refractory
Absolute AR
Relative RR

Figure 4. Biologically common features for membrane decay

CPU and GPU microarchitectures) in case a user wishes

to simulate an unsupported neuron model.

IV. FLEXON: A FLEXIBLE DIGITAL NEURON

In this section, we present Flexon, a flexible and efficient

digital neuron exploiting the biologically common features

shared by diverse neuron models. We first analyze and

extract the biologically common features. Then, the per-

feature data paths are designed. After that, we utilize the

data paths to design Flexon.

A. Biologically Common Features

By analyzing diverse neuron models, we find that the

neuron models share a set of biologically common features.

Furthermore, we observe that the features can be grouped

together to form a complete neuron model such as LIF

model, and different combinations of the features can be

used to express different neuron models such as LLIF model.

Using LIF model as our baseline neuron model, we

classify the identified features into five categories depending

on how the features affect the behaviors of a neuron:

membrane decay, input spike accumulation, spike initiation,

spike-triggered current, and refractory (Table II).

1) Membrane Decay: Depending on how the membrane

potential of a neuron decays over time, two biological

common features exist: exponential decay (EXD) and lin-

ear decay (LID). The membrane potential decays in an

exponential shape with EXD, but it decays linearly with

LID (Figure 4). Most of the neuron models derived from

LIF model, our baseline neuron model, employ EXD [24].

On the other hand, LLIF model employs LID instead of

EXD to further reduce the computational overheads of LIF

Figure 5. Biologically common features for input spike accumulation

model. By abstracting membrane potential decay as a linear

function, LLIF model achieves a lower biological accuracy

than LIF model does; however, it has been an attractive

choice for some SNN simulation accelerators (e.g., Nere et

al. [26], IBM TrueNorth [5], [40]–[42]) as LLIF model does

not need multiplication units and is suitable for event-driven

execution, reducing hardware costs and energy consumption.

In summary, supporting LID in addition to EXD extends

Equation 2 to:

vt =

{
vt−1 +

Δt
τ (v0 − vt−1 + It) (w/ EXD)

vt−1 + It − Vleak (w/ LID)

if vt > θ, then fire a spike and vt = v0

(3)

where Vleak is a linear decay constant.
2) Input Spike Accumulation: When a neuron receives

an input spike from another neuron through a synapse, the

neuron updates its membrane potential according to the

synaptic weight of the synapse. The baseline LIF model

employs current-based accumulation (CUB) which instantly

accumulates the synaptic weight to the membrane potential;

however, some other neuron models (e.g., DLIF model [27])

employ non-instant accumulation mechanisms (Figure 5).

By employing different input spike accumulation mecha-

nisms, neurons can produce different sets of output spikes

with the same set of input spikes.

We find that four biologically common features exist

in terms of input spike accumulation. First, CUB of LIF

model instantly accumulates the synaptic weight of an input

spike to a neuron’s membrane potential as soon as the

neuron retrieves the input spike. Second, conductance-based

accumulation makes the input spike indirectly affect the

membrane potential by replacing It term of Equation 2

with alternative functions. Depending on the type of the

alternative function, conductance-based accumulation can be

grouped as exponential ones (COBE) and alpha function

ones (COBA); COBE uses an exponential function, and

COBA uses an alpha function α(z) = E−n(z) where En(z)
is the En-function. Third, reversal voltage (REV) adjusts the

contribution of the alternative functions to the membrane

potential. The contribution becomes smaller as the difference

279

Figure 6. Biologically common features for spike initiation

between the current membrane potential and reversal voltage

gets smaller.

Supporting COBE, COBA, and REV along with CUB

introduces additional time-varying variables to the baseline

LIF model. Using the additional variables, LIF model can

be extended as:

yt,i = (1− εg,i)yt−1,i + It,i

gt,i =

⎧⎪⎨
⎪⎩
It,i (w/ CUB)

(1− εg,i)gt−1,i + It,i (w/ COBE)

(1− εg,i)gt−1,i + eεg,iyt,i (w/ COBA)

vrev,i =

{
1 (w/o REV)

vg,i − vt−1 (w/ REV, cannot be used w/ CUB)

vt = vt−1 +
Δt

τ
(v0 − vt−1 +

i∑
vrev,i · gt,i)

(4)

where εg,i and vg,i are the conductance decay constant

and the reversal voltage constant, respectively, for the i-th
synapse type, and e is Euler’s number. Note that we can

model multiple synapse types with separate state variables.

For example, most of the SNNs use two synapse types (e.g.,

inhibitory and excitatory synapses), whereas others use three

or more synapse types (e.g., GABA, AMPA, and NMDA)

for more detailed synapse modeling.

3) Spike Initiation: In LIF model, when a neuron’s

membrane potential reaches the threshold voltage (θ), the

neuron instantly fires a spike and sets its membrane po-

tential to the resting voltage (v0). On the other hand,

some neuron models including quadratic integrate-and-fire

model (QIF model) [19] and adaptive exponential integrate-

and-fire model (AdEx model) [43] do not instantly fire a

spike. Such neuron models employ alternative non-instant

functions which control the membrane potential once it

reaches the threshold voltage (Figure 6). Accordingly, such

neuron models may fire a fewer number of output spikes as

the membrane potential may not eventually reach the firing

voltage even though it has exceeded the threshold voltage

(e.g., a large number of inhibitory input spikes while the

membrane potential has not reached the firing voltage).

Two biologically common features fall into this category:

quadratic (QDI) and exponential (EXI) spike initiation. Sim-

ilar to the case of input spike accumulation, QDI and EXI

employ a quadratic function and an exponential function,

respectively, as the alternative function. By extending LIF

Figure 7. Biologically common features for spike-triggered current

model to support QDI and EXI, we obtain:

f(t) =

{
v0 − vt−1 +ΔT · e

vt−1−θ

ΔT (w/ EXI)

(v0 − vt−1)(vc − vt−1) (w/ QDI)

vt = vt−1 +
Δt

τ
(It + f(t))

if vt > vθ, then fire a spike and vt = v0

(5)

where vθ is the firing voltage greater than the threshold

voltage θ, ΔT is sharpness factor (not infinity), and vc is

the critical voltage. Note that a neuron now fires a spike if

its membrane potential exceeds vθ, not θ.

4) Spike-Triggered Current: In some neuron models in-

cluding AdEx model, a neuron inhibits its membrane poten-

tial by itself after firing an output spike [20]. This post-

firing inhibition can be defined as a new category for

biologically common features that does not exist in our

baseline LIF model. We name the category as spike-triggered

current as the inhibition is caused by the negative current

a neuron generates after it fires a spike. In this category,

two biologically common features exist: adaptation (ADT)

and subthreshold oscillation (SBT) (Figure 7). First, ADT

slowly decreases the allowed spike firing frequency of a

neuron when it receives a large number of contiguous input

spikes in a short amount of time. Accordingly, an ADT-

augmented neuron can encode the information of elapsed

time since the onset of the input [7]. Second, SBT makes a

neuron’s membrane potential oscillate near a certain voltage

level. The oscillating voltage level is typically higher than

the resting voltage. An SBT-augmented neuron can act as a

bandpass filter as it filters out spikes within a certain interval

of time [7].

Extending LIF model to support ADT and SBT demands

a new state variable wt which gets accumulated to a neuron’s

membrane potential. The extended LIF model is:

wt =

{
(1− εw)wt−1 (w/ ADT)

(1− εw)wt−1 +
Δt
τ a(vt−1 − vw) (w/ SBT)

vt = vt−1 +
Δt

τ
(v0 − vt−1 + It) + wt

if vt > θ, then fire a spike and vt = v0, wt = wt − b

(6)

280

Table III
COMBINATIONS OF THE 12 BIOLOGICALLY COMMON FEATURES TO SIMULATE VARIOUS NEURON MODELS FROM PRIOR WORK

Neuron Model Features
EXD LID CUB COBE COBA REV QDI EXI ADT SBT AR RR

Linear Leak Integrate-and-Fire (LLIF) [5], [25]–[27] � � �
LIF with Step Inputs (SLIF) [27] � � �

DSRM0 [27] � � �
DLIF [27] � � � �

Quadratic Integrate-and-Fire (QIF) [19] � � � � �
Exponential Integrate-and-Fire (EIF) [44] � � � � �

Izhikevich [31] � � � � � �
Adaptive Exponential Integrate-and-Fire (AdEx) [43] � � � � � � �

AdEx with COBA [43] � � � � � � �
IF psc alpha (from PyNN [38]) � � �

IF cond exp gsfa grr (from PyNN [38]) � � � � �

Figure 8. Biologically common features for refractory

where εw is the adaptation decay constant, a is the sub-

threshold coupling constant and b is the spike-triggered jump

size. As ADT and SBT are triggered by the generation of an

output spike, wt gets adjusted along with vt when a spike

gets fired.

5) Refractory: The last category of biologically common

features is refractory which also prevents a neuron from

firing too many output spikes in a short amount of time.

However, refractory differs from spike-triggered current as

it affects the neuron for a much smaller amount of time;

spike-triggered current tends to last much longer.

Two biologically common features fall into this category:

absolute refractory (AR) and relative refractory (RR) (Fig-

ure 8). Although they both limit a neuron’s firing rate, the

ways they do so significantly differ. AR prevents a neuron

from receiving input spikes in a short amount of time after

the neuron fires a spike. To support AR, we can extend

LIF model by employing a counter to determine whether

a neuron may receive spikes; When a neuron fires a spike,

the counter gets reset to a pre-defined number of time steps.

Then, the counter gets decremented by one at each time

step. While the value of the counter is greater than zero,

the neuron cannot receive spikes; however, when the value

reaches zero, the neuron may receive spikes. In summary,

the extended LIF model to support AR can be expressed as:

if cntt−1 > 0, then It = 0

cntt = max(0, cntt−1 − 1)

vt = vt−1 +
Δt

τ
(v0 − vt−1 + It)

if vt > θ, then fire a spike and

vt = v0, cntt = cntmax

(7)

where cntmax is the number of time steps a neuron may not

receive another spike after firing one.

On the other hand, RR limits the firing rate by flowing a

strong negative current to the neuron’s membrane potential.

To model this behavior, LIF model should be extended as:

rt = (1− εr)rt−1

wt = (1− εw)wt−1

vt = vt−1 +
Δt

τ
(v0 − vt−1 + It)

+ rt(vrr − vt−1) + wt(var − vt−1)

if vt > θ, then fire a spike and

vt = v0, rt = rt − qr, wt = wt − b

(8)

where εr is the relative refractory decay constant, εw is

the adaptation decay constant, var is the adaptation reversal

voltage, and qr is the relative refractory jump size.

B. Simulating Diverse Neuron Models Using the Features

Each of the 12 biologically common features identified

from various neuron models can simulate a unique behavior

of a biological neuron. In other words, different combina-

tions of the features can simulate different neuron models

(Table III). For instance, one can utilize CUB and EXD

to simulate our baseline LIF model. In case we need to

simulate a neuron using LLIF model, we can use CUB and

LID together to replace exponential membrane decay with

linear membrane decay. Furthermore, we can combine 7 out

of the 12 features to simulate highly-complex AdEx model.

Accordingly, using the biologically common features as the

basic building blocks, instead of complete neuron models,

opens up new opportunities toward efficient digital neuron

designs.

281

Designing a digital neuron driven by the biologically com-

mon features rather than traditional model-driven designs

achieves the design goals presented in Section III-B as fol-

lows. First, the feature-driven digital neuron design achieves

high flexibility by supporting a wide range of neuron be-

haviors and neuron models as shown in Section IV-A and

Table III. Second, the basic building blocks of the feature-

driven digital neuron design are the biologically common

features which are more fine-grained than those of model-

driven designs. Third, similar to traditional digital neurons

such as those by Smith [27], feature-driven digital neuron

designs can serve as a specialized data path for accelerating

neuron simulations, and thus they can be easily integrated

into existing general-purpose processors. A similar effort has

been made by Intel to their self-learning chip codenamed

Loihi [45].

Using the biologically common features analyzed from

various neuron models, we now develop data paths for each

of the features. After that, we design Flexon, a flexible

digital neuron with the data paths.

1) Basic Hardware Optimizations: When designing the

data paths, we take two value compaction mechanisms: shift

& scale, and truncate. We also apply a few optimizations

to computational units to reduce the critical path delay.

These optimizations do not affect our SNN simulation results

(Section VI-A).

Shift & Scale. As our baseline neuron model is LIF model,

all neuron models derived from LIF model have resting

voltage v0 and threshold voltage θ as their constants. Given

that we can scale and shift most of the constants by enforcing

v0 = 0 and θ = 1.0, we can safely eliminate v0 and θ from

being stored redundantly among neurons [27]. Moreover, we

can reduce the number of add operations by removing v0
terms from the equations.

Truncate. Enforcing θ = 1.0 guarantees that per-neuron

membrane potential, one of the per-neuron state variables,

always falls within a range of 0.0 to 1.0. Accordingly, the

integer portion of the membrane potential can be truncated,

reducing per-neuron storage requirements. We employ a 32-

bit fixed-point representation whose 10 bits are dedicated to

the integer portion. By doing so, the number of bits for stor-

ing membrane potential reduces by 31.3% (32 bits/neuron

to 22 bits/neuron).

Minimizing Critical Path Delay. We manually identify crit-

ical path delay and optimize the critical path by parallelizing

operations. For example, since the data path for EXI is on

the critical path for Flexon (Figure 10), we place the EXI

output to the top level of the adder tree to reduce the path

delay. In addition, we use a fast approximation algorithm

[46] to implement the exponential unit. This significantly

reduces the critical path delay and power consumption of

the exponential unit.

2) Per-Feature Data Paths: Based on the biologically

common features, we design 10 per-feature data paths

��,�

Σ	

���

�
0

> spike

�
� �

+
−�����

EXD/LID

(a) CUB w/ EXD and LID

��,�

ε�,�
�

+
����,�

��,�

Σ	

(b) COBE

��,�

ε�,�
�

����,�
��,�

Σ	

����,� +

��,�

��,�

COBE

COBA/COBE

(c) COBA

��,�

���

Σ	

-

�,�

(d) REV

��� +
Σ	

−�
��

(e) QDI

��� +

−� Δ�
��

��

�Δ�

Σ	

ε′�

(f) EXI

 ��� +
Σ	

spike

 �

!
� −"

(g) ADT

 ��� Σ	

spike

 �

!
� −"

+
���

�#
−ε�#
!

+ADT-1

ADT-2

SBT

(h) SBT

$%&���

spike

-1
>0

$%&���

$%&�

0
��,� ��,�

(i) AR

'���
+

spike

'�

(
� −)(

 ��� �

Σ	-
��� -

�(
((

ADT-1 ADT-2
!
� −"

(j) RR

Figure 9. Data paths for the biologically common features. For readability,
some terms of Equations 3 through 8 have been replaced with simpler ones;
εm = Δt

τ
, ε′m = 1− εm, ε′g,i = 1− εg,i, Δ

−1
T = 1

Δt
, ε′w = 1− εw ,

and ε′r = 1− εr .

(Figure 9). The data paths implement the features using

Equations 3 through 8 with setting v0 = 0 and θ = 1.0,

and have the following characteristics. First, one of the data

paths implement three of the features: CUB, EXD, and LID

(Figure 9a). The data path implements LIF model (CUB

+ EXD) and LLIF model (CUB + LID). Second, some

data paths utilize other data paths implementing different

biologically common features. For instance, the data path for

COBA embeds that for COBE as the mathematical definition

of COBA embeds that of COBE. Third, to further exploit the

similarities in the mathematical definitions of the features,

some data paths are logically split into two. As an example,

the data path for ADT is split into two sub data paths which

are used by the data paths for SBT and RR.

Using the 10 per-feature data paths, we design and pro-

pose Flexon, a flexible digital neuron to enable efficient

SNN simulations (Figure 10). Flexon employs a single-cycle

design which supports diverse neuron models by integrating

the per-feature data paths. First, it prevents conflicting fea-

tures from being simultaneously activated with multiplexers

(MUXes). For instance, a MUX enables either QDI or EXI

282

REV

COBA

��,�

���

�

����,�

 ���

$%&���

'���

����,� COBA
COBE REV

��,�

��,�
��

*	
QDI
EXI
SBT

ADT-1 �

RR-1

AR-1

 �

��,�
$%&�

$%&�

ADT-2

>�

RR-2 '�

AR-2

0

spike

Register
Combinational

*���,�

Figure 10. Flexon architecture

as they have conflicting definitions for spike initiation. The

same applies for COBA and COBE; however, this case does

not require a MUX because the data path for COBA embeds

COBE. Second, using the MUXes, Flexon reduces dynamic

power consumption by switching the unused data paths off

with latches placed in front of the data paths. In this way,

Flexon can achieve high flexibility by being able to simulate

diverse neuron models using the data paths.

V. SPATIALLY FOLDED FLEXON

In this section, we present a variation of Flexon called

spatially folded Flexon which requires a smaller chip area

by exploiting the computational primitives shared among the

biologically common features.

A. Common Computational Primitives

Flexon greatly reduces the computational overheads of

neuron computation stage while achieving high flexibility

by exploiting the biologically common features; however, it

might not be suitable for scenarios where minimizing the

chip area is an important design requirement (e.g., simulate

as many neurons as possible on a given chip area). The

reason is that Flexon assumes that all of the data paths are

completely independent from each other. But, Flexon might

have redundant hardware units which can be exploited to

reduce the chip area.

We observe that the required chip area can be greatly

reduced by exploiting a small set of computational primi-

tives shared among the biologically common features. For

instance, all of the per-feature data paths excluding the one

for AR utilize multiplication units; the multiplication units

redundantly exist across the data paths. Similar observations

can be found for addition and exponentiation units, showing

that Flexon contains a number of redundant hardware units

which can be exploited to reduce the chip area.

To this end, we design and propose spatially folded

Flexon, a variation of Flexon which requires a smaller

chip area by eliminating the redundant arithmetic units

(Figure 11). Unlike the single-cycle design of Flexon, spa-

tially folded Flexon employs a two-stage pipeline design.

The first pipeline stage updates a neuron’s state variables

such as its membrane potential according to input spikes

�

State Variables (t-1)

×
+

Const.
Buf. (a)

tmp

Const.
Buf. (b)

Inputs

State Variables (t)
(Latches)

State Variables (t)

State
Load Queue

Input
Load Queue

>

AR

AR
(Latch)

AR

State
Store Queue

0

…

…

…

16 x 32 bit4x32 bit

16 x 32 bit

v0+

b wt

+

qr

cntmax

…

s [3:0]

ca[3:0]

b
a

type[1:0]

spike
(1-bit)

Spike
Buffer

-1
rt vt

>0

accum.

cb[2:0]

v_acc

s_wr

ex exp

input It,i statest-1

statest

Figure 11. Spatially folded Flexon architecture

and the enabled biologically common features. The second

pipeline stage examines whether the neuron should fire a

spike, and updates additional state variables if necessary.

Spatially folded Flexon adds buffers and latches to store

feature-related constants and intermediate processing results,

respectively. Note that the state variables do not persist

within spatially folded Flexon; it is a data flow architecture

similar to Flexon. By doing so, spatially folded Flexon

greatly reduces the number of redundant arithmetic units.

B. Control Signals

Spatially folded Flexon must properly schedule the fea-

tures to use the same arithmetic units multiple times. The

reason is that it has a limited number of arithmetic units

(e.g., one multiplier), and some of the biologically common

features need to utilize the same arithmetic unit multiple

times. For instance, QDI needs to be scheduled for at least

two cycles to perform two multiplications (Figure 9e). Thus,

without proper scheduling, spatially folded Flexon may

not guarantee the functional correctness of the biologically

common features.

For the purpose, spatially folded Flexon defines a set of

control signals each corresponding to a set of operations

which spatially folded Flexon should perform (Table IV).

Each control signal denotes which functional unit should be

enabled and which of the available operands should be fed

into the functional unit.

283

Table IV
CONTROL SIGNALS FOR SPATIALLY FOLDED FLEXON

Signal Description Argument Values

a
Select the operand type
of multiplication (MUL)

0: constant
1: tmp register

ca[3:0]
If MUL operand is a constant
(i.e., a == 0), select the constant to use

0-15: constant index

b[1:0]
Select the operand type
of addition (ADD)

0: 0
1: constant
2: input
3: tmp register

cb[2:0]
If ADD operand is a constant
(i.e., b == 1), select the constant to use

0-7: constant index

type[1:0]
Select the synapse type
for spike input accumulation

0: excitatory
1: inhibitory
2-3: others

s[3:0] Select the state variable for MUL 0-15: state variable index

exp
Enable exponentiation of
MUL-ADD output

0: do not exponentiate
1: exponentiate

s wr
If set, state variable register
selected by s[3:0] will be written

0: do not update
1: update

v acc
If set, the output value of MUL-ADD
will be accumulated to the voltage

0: do not accumulate
1: accumulate

Table V
CONTROL SIGNALS TO EMULATE THE BIOLOGICALLY COMMON

FEATURES ON SPATIALLY FOLDED FLEXON

Feature(s) Operation(s) Control Signals

a b s

ex
p

s
w

r

v
ac

c

LID v′+ = v + (−Vleak) 0 1 v 0 0 1

CUB + EXD v′+ = ε′m · v + I 0 2 v 0 0 1

EXD v′+ = ε′m · v 0 0 v 0 0 1

COBE gi = ε′g,i · gi + I; v′+ = gi 0 2 g 0 1 1

COBA
yi = ε′g,i · yi + I 0 2 y 0 1 0

tmp = (eεg,i) · yi 0 0 y 0 0 0
gi = ε′g,i · gi + tmp; v′+ = gi 0 3 g 0 1 1

REV
tmp = −1 · v + vg,i 0 1 v 0 0 0

v′+ = tmp · gi 1 0 g 0 0 1

ADT w = ε′w · w; v′+ = w 0 0 w 0 1 1

SBT + ADT
tmp = (εma) · v + (−εmavw) 0 1 v 0 0 0
w = ε′ww + tmp; v′+ = w 0 3 w 0 1 1

RR

w = ε′w · w 0 0 w 0 1 0
tmp = −1 · v + var 0 1 v 0 0 0

v′+ = tmp · w 1 0 w 0 0 1
r = ε′r · r 0 0 r 0 1 0

tmp = −1 · v + vrr 0 1 v 0 0 0
v′+ = tmp · r 1 0 r 0 0 1

QDI + EXD
tmp+ = εm · v − vc 0 1 v 0 0 0

v′+ = tmp · v 1 0 v 0 0 1

EXI + EXD
v′+ = ε′m · v 0 0 v 0 0 1

v = exp(Δ−1
T
· v + (θΔ−1

T
)) 0 1 v 1 1 0

v′+ = (−ΔT · εm) · v 0 0 v 0 0 1

Using the control signals, spatially folded Flexon can

simulate a desired biologically common feature (Table V).

When the feature needs to be executed in multiple cycles

due to a structural hazard, multiple control signals are con-

secutively applied to enable correct simulation. For example,

to simulate CUB and EXD (i.e., LIF model), only a single

control signal is necessary as there is no structural hazard

on any of the available arithmetic units (see Figure 9a). The

single control signal are then used in two cycles as spatially

folded Flexon consists of two pipeline stages. As another

example, to simulate QDI, two control signals should be

executed to use the single multiplication unit twice; due to

pipelining, the latency of QDI simulation is three cycles.

�
�����
�����
�����
�����
������

�
�
�
�
�
��

�
�
��
��

�	

��
�

�
�

�
�
�
	
��
�

�
�

�
��& #)�.��&��

Figure 12. Power consumption and chip area overheads of the per-feature
data paths, Flexon, and spatially folded Flexon

VI. EVALUATION

A. Experimental Setup

To evaluate both baseline and spatially folded Flexons,

we implement them at register-transfer level (RTL) using

Verilog. The functional correctness of the implementations

is thoroughly verified by running testbenches for the neuron

models and by comparing the output spikes with those of

Brian [10], a CPU-based SNN simulator. For synthesis,

Synopsys Design Compiler with TSMC 45 nm standard

cell library was utilized. During the synthesis, we used

conservative clock frequencies by adding an additional slack

margin of 20% to timing constraints. This ended up with

Flexon and spatially folded Flexon operating at 250 MHz

and 500 MHz, respectively. Static random-access memory

(SRAM) costs (e.g., constant buffers) were measured using

CACTI 6.5 [47].

As benchmarks, we used the SNNs collected from a

number of neuroscience publications (Table I). Eight of the

CPU-based benchmarks are simulated by CPU-based NEST

[9]; however, the other two benchmarks collected from GPU-

based GeNN [15] are not compatible with NEST. Thus, we

utilized GeNN’s CPU mode to run the two benchmarks on

CPU. Intel Xeon E5-2630 v4 CPU (12 cores, 2.2 GHz) and

NVIDIA Titan X (Pascal) GPU were used as the baseline

server-class general-purpose processors.

B. Flexible & Low-Overhead Digital Neuron

In this experiment, we evaluate the hardware costs of

Flexon and spatially folded Flexon. The per-feature data

paths are also evaluated as they are the basic building blocks

of Flexon. Figure 12 shows the power consumption and the

chip area overheads of the evaluated circuits. We observe

that the per-feature data paths incur very small hardware

costs as the corresponding biologically common features are

significantly simpler than a complete neuron model. Flexon,

essentially a collection of the per-feature data paths, requires

up to 5.84x larger chip area and consumes up to 3.44x more

power than spatially folded Flexon which greatly reduces the

hardware costs by eliminating redundant arithmetic units.

Furthermore, its hardware costs are even smaller than some

284

Table VI
CHIP AREA OVERHEADS AND POWER CONSUMPTION OF 12-NEURON

FLEXON AND 72-NEURON SPATIALLY FOLDED FLEXON ARRAYS

Digital Neuron Array Component Area [mm2] Power [W]

Flexon
(12 neurons)

Neuron 1.188 0.130
SRAM 8.070 0.751
Total 9.258 0.881

Spatially Folded Flexon
(72 neurons)

Neuron 1.294 0.305
SRAM 6.324 1.179
Total 7.618 1.484

� �� ��� ����

 �
����
�
�
���������

'()�*�+�,)
 �
����

	
���������
	
�������
��

�
��������������
$%�&������

�����-)��!.�
��
�����-)��/01

2&%��
2&����������

 �
!

#�
!

������		����

��-�4�-
� 5�-�1.������4
6�6�4�-
�

(a) Latency improvements

� �� ��� ���� ����� ������

 �
����
�
�
���������

'()�*�+�,)
 �
����

	
���������
	
�������
��

�
��������������
$%�&������

�����-)��!.�
��
�����-)��/01

2&%��
2&����������

 �
!

#�
!

������	����������	���� ���!		�"�

(b) Energy efficiency improvements

Figure 13. Speedups and energy efficiency improvements in the neuron
computation phase of SNN simulations of the 12-neuron Flexon and the
72-neuron spatially folded Flexon arrays over general-purpose processors

of the per-feature data paths (e.g., EXI, RR) by eliminating

redundant arithmetic units within the same data path.

C. Highly Efficient SNN Simulations

We evaluate whether Flexon realizes efficient SNN simu-

lations by synthesizing example digital neuron arrays to im-

plement Flexon and spatially folded Flexon. As the baseline

CPU and GPU incur much higher hardware overheads and

the digital neurons themselves only emulate one neuron at a

time, we first synthesize a 12-neuron Flexon array capable

of simulating 12 neurons at a time for a fair comparison;

the number of neurons, 12, is chosen to match the number

of cores of the baseline CPU. For a spatially folded Flexon

array, we set the number of neurons as 72 based on the result

that Flexon incurs 5.43x larger footprint than spatially folded

Flexon. The required SRAMs for storing neuron states and

constants are taken into an account when synthesizing the

arrays. Table VI summarizes the synthesis results of the

arrays; the two arrays demand similar chip sizes which are

significantly smaller than CPU and GPU.

We then simulate one time step for the collected SNNs

to compare CPU, GPU, and the two neuron arrays in

terms of neuron computation latency and energy efficiency.

The results clearly indicate that the neuron arrays greatly

outperform the server-class CPU and GPU (Figure 13). First,

both neuron arrays are capable of simulating all the collected

SNNs, showing the high flexibility of Flexon. Second, both

neuron arrays achieve orders of magnitude lower simulation

latencies and higher energy efficiencies due to their efficient

designs. The Flexon array improves latency by 87.4x and

8.19x over CPU and GPU, respectively, on geometric mean;

the spatially folded Flexon array outperforms CPU and

GPU by 122.5x and 9.83x, respectively. The Flexon array

improves energy efficiency by 6,186x and 442x over CPU

and GPU, respectively; the spatially folded Flexon array

improves energy efficiency by 5,415x and 135x than CPU

and GPU, respectively. In summary, Flexon is a promising

alternative digital neuron toward realizing efficient SNN

simulations.

As a trade-off analysis, we compare the latency and

energy efficiency improvements of the two neuron arrays. In

terms of latency, the spatially folded Flexon array typically

outperforms the Flexon array by simulating more neurons at

the same time. However, for Destexhe-LTS and Destexhe-

UpDown SNNs, the Flexon array is faster due to its single-

cycle design; the two-stage pipeline of spatially folded

Flexon requires multiple cycles to simulate a neuron. When

it comes to energy efficiency, the Flexon array tends to

achieve higher energy efficiency throughout the SNNs. This

is also a result of the single-cycle design; the dynamic power

consumption of spatially folded Flexon is larger than that of

Flexon as multiple control signals get applied over multiple

cycles.

VII. DISCUSSION

A. Support for Additional Neuron Models

To support diverse neuron models and biologically mean-

ingful SNNs, we designed and proposed Flexon which

exploits the biologically common features shared among

neuron models. Still, as we mainly target neuron models

derived from LIF model, there exist some other neuron

models not fully supported by Flexon. Some neuroscience

publications introduce fully custom-designed neuron models

to achieve a higher biological modeling accuracy. Although

not natively supported by Flexon, we can apply the following

workarounds to support the custom-designed neuron models.

First, as for spatially folded Flexon, one can emulate a

custom neuron behavior using a proper combination of the

control signals. For example, background current, a phe-

nomenon that each neuron constantly accumulates a weight

even in the absence of an input spike, can be emulated by

dedicating one synapse type to background current (Ibg) and

by executing v′ = v + Ibg with b = 2 and v_acc = 1.

285

Second, in cases where custom-designed neuron models de-

mand arithmetic operations not implemented in Flexon (e.g.,

division), we can still resort to general-purpose processors.

In particular, when an SNN consists of both the supported

and the unsupported neuron models (e.g., a mixture of

AdEx and HH), we can still accelerate SNN simulations

by offloading the supported neuron models to Flexon.

B. Integrating to SNN Front-Ends

For SNN simulations, SNN front-ends such as PyNN [38]

play an important role as they provide API functions,

oblivious to the underlying hardware, for describing an

SNN. As a result, prior SNN simulation accelerators are

usually integrated to the front-ends to support existing

SNN descriptions. The API functions allow users to specify

what type of neuron models to use and how many neu-

rons exist for each of the neuron models (e.g., PyNN’s

sim.Population()). The SNN description then gets

translated into machine code using device-specific back-

ends, and the simulation runs on the target device using

machine code. Therefore, for the digital neurons to be widely

deployed, they should be seamlessly integrated to the front-

ends.

Flexon can be easily integrated to the front-ends as it does

not require any modifications in the front-ends. Similar to the

back-ends for existing hardware (e.g., CPUs, GPUs), writing

a new back-end for Flexon and spatially folded Flexon is

sufficient for the integration. For example, implementing a

code generator which translates a neuron model (e.g., LIF

model) to the control signals for spatially folded Flexon

(e.g., that for CUB + EXD) automatically integrates spatially

folded Flexon to the front-ends. A similar approach can be

used for Flexon by generating MUX controlling code instead

of the control signals.

VIII. RELATED WORK

SNN Simulation Frameworks. To support diverse neuron

behaviors, general-purpose processors such as CPUs and

GPUs are widely used to simulate SNNs. Examples of CPU-

based frameworks include NEURON [8], NEST [9], Brian

[10], [48], and Auryn [12]. SpiNNaker [11], [49]–[52], a

custom-designed board for SNN simulations, is also a CPU-

based framework as it utilizes low-power ARM CPU cores

for the simulations. GPU-based frameworks (e.g., CARLsim

[14], [53]–[56], NeMo [13], GeNN [15]) exploit the high

throughput of GPUs to achieve faster simulations. Despite

their capabilities to support any neuron models, they all

suffer from the high computational overheads of neuron

computation (Section III-A).

Neuron Models. Neuroscientists have been actively propos-

ing various neuron models to abstract biological neurons.

The model proposed by Hodgkin and Huxley [21] is highly

accurate and employs a RC circuit which characterizes a

neuron’s membrane potential. Unfortunately, its high com-

putational overheads make the model difficult to be used in

practical applications [22]. To avoid the high computational

overheads, Izhikevich [31] proposes an alternative, yet bi-

ologically plausible model. Izhikevich’s model emulates 20

neuronal behaviors which integrate-and-fire models cannot

emulate. Flexon fully supports Izhikevich’s model.

Model-Driven SNN Simulation Accelerators. Some prior

work proposes to employ FPGA- or ASIC-based accelerators

for neuron computation to achieve fast and efficient SNN

simulations. IBM TrueNorth [5], [40]–[42] is capable of

simulating one million neurons per board using LLIF model.

INXS [58] improves the energy efficiency of TrueNorth by

employing memristors for synapse-related operations. Neu-

rogrid [19] and work by Cruz-Albrecht et al. [59] support

QIF model and DLIF model, respectively. Recent work by

Smith [27] proposes four digital neurons each supporting

DLIF, DSRM0, SLIF, and LLIF model. The work also

proposes PSRM0 digital neuron to improve the efficiency

of two-stage neurons (i.e., the digital neurons for DLIF and

DSRM0) by employing piecewise linear approximations.

Du et al. [60] compares multi-layer perceptron and SNN

by designing an accelerator which implements LIF model.

However, the prior SNN accelerators employ model-driven

designs, making them difficult to support various neuron

models. On the other hand, Flexon employs a feature-driven

design to achieve high flexibility, while supporting diverse

neuron models.

Temporal Neural Networks. Some work [61], [62] pro-

poses that the relative spike timing across multiple synapses

is crucial for inter-neuron communication. A temporal neu-
ron has multiple synapses with another neuron to use their

spike timing difference to encode information. The weight of

each synapse is trained based on the relative spike timing so

that the neuron can detect a temporal pattern of input spikes

to fire an output spike. Although our paper emphasizes

accurate neuron models, simpler models in combination with

the temporal encoding might also work well for the brain-

like computation [63]. However, there is still no consensus

about which parts are more important than the others in

terms of the brain’s computation capability.

IX. CONCLUSION

In this paper, we proposed Flexon which achieves highly

efficient SNN simulations without sacrifying the flexibility

to simulate diverse neuron models. The key idea of Flexon

is to exploit the biologically common features shared by the

neuron models. Flexon employs the data paths implementing

the features and achieves high simulation efficiency. Spa-

tially folded Flexon further reduces the required chip area

by eliminating the redundant arithmetic units in the baseline

Flexon. Both the baseline and spatially folded Flexons

are applicable to existing general-purpose processors as a

specialized data path for SNN simulations.

286

ACKNOWLEDGMENT

This work was partly supported by Basic Science Re-

search Program through the National Research Founda-

tion of Korea (NRF) funded by the Ministry of Science,

ICT & Future Planning (NRF-2015M3C4A7065647, NRF-

2017R1A2B3011038). We also appreciate the support from

Automation and Systems Research Institute (ASRI), Inter-

university Semiconductor Research Center (ISRC), and Neu-

ral Processing Research Center (NPRC) at Seoul National

University.

REFERENCES

[1] W. Maass, “Networks of Spiking Neurons: The Third Gener-
ation of Neural Network Models,” Neural Networks, vol. 10,
1997.

[2] S. Ghosh-Dastidar and H. Adeli, “Spiking Neural Networks,”
Int. J. of Neural Syst., vol. 19, 2009.

[3] J. V. Arthur et al., “Building Block of a Programmable
Neuromorphic Substrate: A Digital Neurosynaptic Core,” in
Proc. 2012 Int. Joint Conf. on Neural Networks (IJCNN),
2012.

[4] P. U. Diehl and M. Cook, “Unsupervised learning of digit
recognition using spike-timing-dependent plasticity,” Fron-
tiers in Computational Neuroscience, vol. 9, 2015.

[5] P. A. Merolla et al., “A million spiking-neuron integrated
circuit with a scalable communication network and interface,”
Science, vol. 345, 2014.

[6] Y. Cao, Y. Chen, and D. Khosla, “Spiking Deep Convolutional
Neural Networks for Energy-Efficient Object Recognition,”
Int. J. of Comput. Vision, vol. 113, 2015.

[7] E. M. Izhikevich, “Which Model to Use for Cortical Spiking
Neurons?” IEEE Trans. on Neural Networks, vol. 15, 2004.

[8] M. L. Hines and N. T. Carnevale, “NEURON: A Tool for
Neuroscientists,” The Neuroscientist, vol. 7, 2001.

[9] M.-O. Gewaltig and M. Diesmann, “NEST (NEural Simula-
tion Tool),” Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[10] D. F. M. Goodman and R. Brette, “The Brian simulator,”
Frontiers in Neuroscience, vol. 3, 2009.

[11] M. M. Khan et al., “SpiNNaker: Mapping Neural Networks
onto a Massively-Parallel Chip Multiprocessor,” in Proc.
IEEE Int. Joint Conf. on Neural Networks (IJCNN), 2008.

[12] F. Zenke and W. Gerstner, “Limits to high-speed simulations
of spiking neural networks using general-purpose computers,”
Frontiers in Neuroinformatics, vol. 8, 2014.

[13] A. K. Fidjeland et al., “NeMo: A Platform for Neural
Modelling of Spiking Neurons Using GPUs,” in Proc. 20th
IEEE Int. Conf. on Application-specific Syst., Architectures
and Processors (ASAP), 2009.

[14] J. M. Nageswaran et al., “A configurable simulation environ-
ment for the efficient simulation of large-scale spiking neural
networks on graphics processors,” Neural Networks, vol. 22,
2009.

[15] E. Yavuz, J. Turner, and T. Nowotny, “GeNN: a code gener-
ation framework for accelerated brain simulations,” Scientific
Reports, vol. 6, 2016.

[16] M. Ambroise et al., “Biorealistic Spiking Neural Network on
FPGA,” in Proc. 47th Annu. Conf. on Information Sciences
and Syst. (CISS), 2013.

[17] K. Cheung, S. R. Schultz, and W. Luk, “NeuroFlow: A Gen-
eral Purpose Spiking Neural Network Simulation Platform
using Customizable Processors,” Frontiers in Neuroscience,
vol. 9, 2016.

[18] J. Schemmel et al., “A Wafer-Scale Neuromorphic Hardware
System for Large-Scale Neural Modeling,” in Proc. IEEE Int.
Symp. on Circuits and Syst. (ISCAS), 2010.

[19] B. V. Benjamin et al., “Neurogrid: A Mixed-Analog-Digital
Multichip System for Large-Scale Neural Simulations,” Pro-
ceedings of the IEEE, vol. 102, 2014.

[20] W. Gerstner et al., Neuronal Dynamics: From Single Neurons
to Networks and Models of Cognition. Cambridge University
Press, 2014.

[21] A. L. Hodgkin and A. F. Huxley, “A Quantitative Description
of Membrane Current and Its Application to Conduction and
Excitation in Nerve,” The J. of Physiology, vol. 117, 1952.

[22] A. Finkelstein et al., “Computational Challenges of Systems
Biology,” Compute, vol. 37, 2004.

[23] R. B. Stein, “A Theoretical Analysis of Neuronal Variability,”
Biophysical J., vol. 5, 1965.

[24] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Compu-
tational and Mathematical Modeling of Neural Systems. The
MIT Press, 2005.

[25] A. Upegui, C. A. Peña-Reyes, and E. Sanchez, “An FPGA
platform for on-line topology exploration of spiking neural
networks,” Microprocessors and Microsystems, vol. 29, 2005.

[26] A. Nere et al., “Bridging the Semantic Gap: Emulating
Biological Neuronal Behaviors with Simple Digital Neurons,”
in Proc. 19th IEEE Int. Symp. on High Performance Comput.
Architecture (HPCA), 2013.

[27] J. E. Smith, “Efficient Digital Neurons for Large Scale
Cortical Architectures,” in Proc. 41st Int. Symp. on Comput.
Architecture (ISCA), 2014.

[28] R. Brette et al., “Simulation of networks of spiking neurons:
A review of tools and strategies,” J. of Computational Neu-
roscience, vol. 23, 2007.

[29] N. Brunel, “Dynamics of Sparsely Connected Networks of
Excitatory and Inhibitory Spiking Neurons,” J. of Computa-
tional Neuroscience, vol. 8, 2000.

[30] A. Destexhe, “Self-sustained asynchronous irregular states
and Up-Down states in thalamic, cortical and thalamocorti-
cal networks of nonlinear integrate-and-fire neurons,” J. of
Computational Neuroscience, vol. 27, 2009.

[31] E. M. Izhikevich, “Simple Model of Spiking Neurons,” IEEE
Trans. on Neural Networks, vol. 14, 2003.

[32] E. Müller, K. Meier, and J. Schemmel, “Methods for Simu-
lating High-Conductance States in Neural Microcircuits,” in
Proc. Brain Inspired Cognitive Syst. (BICS), 2004.

[33] T. Nowotny et al., “Self-organization in the olfactory system:
one shot odor recognition in insects,” Biological Cybernetics,
vol. 93, 2005.

[34] T. C. Potjans and M. Diesmann, “The Cell-Type Specific
Cortical Microcircuit: Relating Structure and Activity in a
Full-Scale Spiking Network Model,” Cerebral Cortex, vol. 24,
2014.

[35] T. P. Vogels et al., “Inhibitory Plasticity Balances Excitation
and Inhibition in Sensory Pathways and Memory Networks,”
Science, vol. 334, 2011.

[36] T. P. Vogels and L. F. Abbott, “Signal Propagation and Logic
Gating in Networks of Integrate-and-Fire Neurons,” J. of

287

Neuroscience, vol. 25, 2005.

[37] E. Fehlberg, “Low-order classical Runge-Kutta formulas with
stepsize control and their application to some heat transfer
problems,” National Aeronautics and Space Administration,
Tech. Rep., 1969.

[38] A. P. Davison et al., “PyNN: a common interface for neuronal
network simulators,” Frontiers in Neuroscience, vol. 2, 2009.

[39] S. Schmitt et al., “Neuromorphic Hardware In The Loop:
Training a Deep Spiking Network on the BrainScaleS Wafer-
Scale System,” in Proc. 2017 Int. Joint Conf. on Neural
Networks (IJCNN), 2017.

[40] A. S. Cassidy et al., “Cognitive Computing Building Block: A
Versatile and Efficient Digital Neuron Model for Neurosynap-
tic Cores,” in Proc. 2013 Int. Joint Conf. on Neural Networks
(IJCNN), 2013.

[41] J. Seo et al., “A 45nm CMOS Neuromorphic Chip with a
Scalable Architecture for Learning in Networks of Spiking
Neurons,” in Proc. IEEE Custom Integrated Circuits Conf.
(CICC), 2011.

[42] F. Akopyan et al., “TrueNorth: Design and Tool Flow of a 65
mW 1 Million Neuron Programmable Neurosynaptic Chip,”
IEEE Trans. on Comput.-Aided Design of Integrated Circuits
and Syst. (TCAD), vol. 34, 2015.

[43] R. Brette and W. Gerstner, “Adaptive Exponential Integrate-
and-Fire Model as an Effective Description of Neuronal
Activity,” J. of Neurophysiology, vol. 94, 2005.

[44] N. Fourcaud-Trocmé et al., “How Spike Generation Mech-
anisms Determine the Neuronal Response to Fluctuating
Inputs,” J. of Neuroscience, vol. 23, 2003.

[45] M. Mayberry. (2017) Intel’s New Self-Learning Chip
Promises to Accelerate Artificial Intelligence. [Online].
Available: https://newsroom.intel.com/editorials/intels-new-
self-learning-chip-promises-accelerate-artificial-intelligence/

[46] N. N. Schraudolph, “A Fast, Compact Approximation of the
Exponential Function,” Neural Computation, vol. 11, 1999.

[47] S. J. E. Wilton and N. P. Jouppi, “CACTI: An Enhanced
Cache Access and Cycle Time Model,” IEEE J. of Solid-State
Circuits, vol. 31, 1996.

[48] M. Stimberg et al., “Equation-oriented specification of neural
models for simulations,” Frontiers in Neuroinformatics, vol. 8,
2014.

[49] L. A. Plana et al., “SpiNNaker: Design and Implementation
of a GALS Multicore System-on-Chip,” ACM J. on Emerging
Technologies in Computing Syst. (JETC), vol. 7, 2011.

[50] E. Painkras et al., “SpiNNaker: A 1-W 18-Core System-
on-Chip for Massively-Parallel Neural Network Simulation,”
IEEE J. of Solid-State Circuits, vol. 48, 2013.

[51] S. B. Furber et al., “Overview of the SpiNNaker System
Architecture,” IEEE Trans. on Comput., vol. 62, 2013.

[52] S. B. Furber et al., “The SpiNNaker Project,” Proceedings of
the IEEE, vol. 102, 2014.

[53] M. Richert et al., “An efficient simulation environment for
modeling large-scale cortical processing,” Frontiers in Neu-
roinformatics, vol. 5, 2011.

[54] M. Beyeler et al., “Efficient Spiking Neural Network Model
of Pattern Motion Selectivity in Visual Cortex,” Neuroinfor-
matics, vol. 12, 2014.

[55] K. D. Carlson et al., “An efficient automated parameter
tuning framework for spiking neural networks,” Frontiers in
Neuroscience, vol. 8, 2014.

[56] M. Beyeler et al., “CARLsim 3: A User-Friendly and Highly
Optimized Library for the Creation of Neurobiologically
Detailed Spiking Neural Networks,” in Proc. 2015 Int. Joint
Conf. on Neural Networks (IJCNN), 2015.

[57] A. Bhattacharjee, “Using Branch Predictors to Predict Brain
Activity in Brain-Machine Implants,” in Proc. 50th Annu.
IEEE/ACM Int. Symp. on Microarchitecture (MICRO), 2017.

[58] S. Narayanan, A. Shafiee, and R. Balasubramonian, “INXS:
Bridging the Throughput and Energy Gap for Spiking Neural
Networks,” in Proc. 2017 Int. Joint Conf. on Neural Networks
(IJCNN), 2017.

[59] J. M. Cruz-Albrecht, M. W. Yung, and N. Srinivasa, “Energy-
Efficient Neuron, Synapse and STDP Integrated Circuits,”
IEEE Trans. on Biomedical Circuits and Syst., vol. 6, 2012.

[60] Z. Du et al., “Neuromorphic Accelerators: A Comparison Be-
tween Neuroscience and Machine-Learning Approaches,” in
Proc. 48th Annu. IEEE/ACM Int. Symp. on Microarchitecture
(MICRO), 2015.

[61] T. Masquelier and S. J. Thorpe, “Unsupervised Learning of
Visual Features through Spike Timing Dependent Plasticity,”
PLOS Computational Biology, vol. 3, 2007.

[62] O. Bichler et al., “Extraction of temporally correlated features
from dynamic vision sensors with spike-timing-dependent
plasticity,” Neural Networks, vol. 32, 2012.

[63] J. E. Smith, Space-Time Computing with Temporal Neural
Networks, M. Martonosi, Ed. Morgan & Claypool, 2017.

288

